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Abstract: The frequency dependence of the dielectric properties and dc conduc-
tivity ��dc� of polyaniline samples that have been prepared in a conducting
state by a chemical method using Fenton’s reagent were investigated. These
samples were prepared at constant molar ratio H2O2/aniline (r = 1) and at
different concentrations of both H2O2 and aniline (0.2M, 0.4M, and 0.5M).
The measurements were carried out using the complex impedance technique
in the frequency range 0.12 to 100KHz at the temperature range from about
278 to 311K. It has been found that the concentrations of H2O2 and aniline
have a noticeable effect on the dielectric properties. All samples have only one
activation energy for one phase of material except at 0.5M, implying several
activation energies and consequently several phases in the material.
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INTRODUCTION

The dielectric properties of polymer materials play an important role
in device applications such as high-performance capacitors, electrical
cable insulation, and electronic packaging and components. The detailed
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Dielectric Properties Investigation of Polyaniline 653

investigation of the dielectric loss, electrode, and interfacial polarization
effects of polymers is of great importance.

Polyaniline (PANI) is a favorable polymer to work with because
of its good environmental stability, good redox reversibility, and good
electrical conductivity. These properties provide possible applications in
battery electrodes,�1,2� electrochromic devices,�3,4� photoelectric cells,�5,6�

light-emitting diodes,�7� and biosensors.�8,9�

Polyaniline is generally prepared by the oxidative polymerization of
aniline by ammonium peroxydisulfate (APS).�10–13� Ammonium peroxy-
disulfate is a strong oxidant, and the polymerization of aniline is an
exothermal reaction, so the reaction heat is difficult to control, leading
to a wide molecular weight distribution. Post-treatments become compli-
cated because the inorganic by-product (ammonium sulfate) exists in the
product.�14� On the other hand, H2O2 reduction product is only H2O,
thus greatly simplifying the post-treatment. Another advantage is the
possibility of recycling the reaction medium because it does not contain
any harmful components to aniline polymerization.

Sun et al.�14,15� have studied the aniline polymerization in the bulk
using H2O2 as an oxidizing agent and FeCl2 as catalyst. The optimum
reaction conditions for the PANI powder formation were studied, and
these authors also mentioned that if the polymerization of aniline is
carried out by using only H2O2 as an oxidant, small yield PANI is
obtained, even after 24h, and hence they added the catalyst. Inoue
et al.�16� reported the oxidation of aniline using H2O2 in the presence
of Fe2+ to prepare PANI powder; its conductivity was 10−6–10−9 Scm−1.
Such low conductivity was attributed to the deprotonation of PANI,
since PANI was treated using a boiling aqueous solution of ammonium
hydroxide before measurement of conductivity.

In our previous work,�17� we studied the synthesis of PANI films
using quartz crystal microbalance to observe the formation of the PANI
powder in the bulk. The powder had very low conductivity value
compared to that obtained by APS. The charge-transfer mechanism
of conducting polymers including PANI has been investigated using
dielectric relaxation behavior and ac conductivity measurements.�18–23�

Based on these investigations, no work was done to study dielectric
properties of PANI powder obtained by Fenton’s reagent. Therefore, the
present study aimed to investigate the dielectric properties of the powder.
The molar ratio �r� of H2O2/aniline was kept constant at a value of unity
as recommended by Sun et al.�14� and the concentrations of H2O2 and
aniline were 0.2, 0.4, and 0.5M.
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EXPERIMENTAL SECTION

Chemicals

Aniline (ADWIC, Egypt) was distilled twice under atmospheric pressure.
H2O2 (ADWIC, Egypt), ferrous sulfate �FeSO4 · 7H2O� (Qualikems,
India), and sulfuric acid were used without further purification. Freshly
distilled water was used to prepare all aqueous solutions.

Sample Preparation

A series of solutions were made in which the molar ratio �r� of
H2O2/aniline was kept constant at a value of unity. To achieve that,
the concentration of both H2O2 and aniline was changed simultaneously
to 0.2M (sample (a)), 0.4M (sample (b)), and 0.5M (sample (c)) in 0.3M
sulfuric acid solution and at 0.001M ferrous sulfate. The PANI powder
precipitated in the bulk of the solution was collected from the reaction
medium after the polymerization process was terminated by filtration,
then washing with 0.3M sulfuric solution and then acetone. The obtained
PANI samples have green color except at 0.5M (sample (c)), which has
brown color.

The dielectric properties were investigated by using the complex
impedance technique (lock-in amplifier, SR 510 Stanford Research
System, Model SR830 DSP); the details of the circuit used were previ-
ously published elsewhere.�24� All measurements were carried out in
frequency range 0.12 to 100KHz and at temperatures from about 278
to 311K. Also, the reversibility behavior of dielectric properties with
temperature was checked, and the data were the same for increasing and
decreasing temperatures. The values of dc conductivity ��dc� at different
temperatures were obtained by extrapolation to zero frequency.

RESULTS AND DISCUSSION

Dependence of Dielectric Constant �′ on Frequency

Figures 1(a)–1(c) show the frequency dependence of �′ at different temper-
atures for samples (a), (b), and (c), respectively. These figures are plotted
on a log-log scale because of high values of �′ obtained at low frequencies.
The values of �′ for all samples are very high at low frequencies and high
temperatures, then decrease with increasing frequency. Such high values
of �′ may be due to the interfacial effects within the bulk of the samples
and also may be partially due to the electrode effects. This is attributed to
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Dielectric Properties Investigation of Polyaniline 655

Figure 1. Logarithmic plots of �′ at different concentrations of H2O2 and
aniline: (a) 0.2M, (b) 0.4M, and (c) 0.5M.
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the long-range drift of ions, and, consequently, the barrier layer formation
on the electrode surface results in large values of �′ and dielectric loss
�′′,�25,26� when an electric field is applied to the sample. At high frequencies,
the periodic reversal of the electric field occurs so fast that ion diffusion in
the direction of the field can no longer follow the field variation. Conse-
quently, the polarization due to the charge accumulation decreases, leading
to a decrease in the values of �′ and �′′.�27,28�

The values of �′ and �′′ (the figure of �′′ relations is not shown)
decrease as the concentrations of both H2O2 and aniline increase. It can
be seen that sample (c) has the lowest �′ and �′′ values of all the samples.
This observation may be attributed to the fact that the number of reori-
ented dipoles is much lower than in other PANI samples. This sample is
different in structure and color (brown) because it contains high fraction
of oligomers of PANI and cross-linking of PANI molecular chain�14,29�;
this observation was also evidenced in a previous work.�17�

Dependence of Electric Modulus M ′ and M ′′ on Frequency

Interfacial polarization arises mainly from the existence of polar and
conductive regions dispersed in relatively less polar and insulating
matrix. This phenomenon is particularly important in conjugated
polymers and may interfere in the relaxation process analysis. Therefore,
it was decided to study the “electric modulus” formalism,�30� and, hence,
the conductivity relaxation�31–34� of the polymer can be investigated.
An advantage of using the electric modulus to interpret bulk relaxation
properties is that the variation in the large values of permittivity and loss
at low frequencies are minimized.�35�

Many authors prefer to describe the dielectric properties of these
systems by using the electric modulus M ′ and M ′′ formalism.�23,36� The
complex electric modulus is derived from the complex permittivity,
according to the relationship defined by Macedo et al.�25� The real and
imaginary parts of the electric modulus M ′ and M ′′ can be calculated
from �′ and �′′, as follows�37�:

M ′ = �′

��′�2 + ��′′�2
M ′′ = �′′

��′�2 + ��′′�2
(1)

M ′ and M ′′ representations of dielectric process give some idea of relax-
ation of dipoles that exists in different energy environments, independent
of the strong effect of dc conductivity, which often masks the actual
dielectric relaxation processes.

The calculated values of M ′ and M ′′ were plotted against the
frequency as shown in Figure 2, where M ′ exhibits a part of a sigmoid
shape for all samples. The almost zero values of M ′ at low frequency

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
2
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Dielectric Properties Investigation of Polyaniline 657

Figure 2. Frequency dependence of M ′′ and M ′ at different temperatures of
and at different concentrations of H2O2 and aniline: (a) 0.2M, (b) 0.4M, and
(c) 0.5M.

indicate the disappearance of electrode polarization.�38� For samples
(a) and (b) both M ′ and M ′′ increase with increase in frequency and
decrease with increase in temperature. For sample (c), M ′′ decreases
with increasing frequency and increases with increase in temperature
indicating that sample (c) has a different structure than the others as
previously mentioned.�17� As shown in Figure 2 for sample (b), M ′′

exhibits only one peak, which shifts to higher frequencies with increasing
temperature, implying higher energies of the current charge carriers at
higher temperatures. These peaks are related to relaxation process.�38� On
the other hand, for sample (a) it seems that the peaks of M ′′ may be
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658 M. M. Ayad et al.

Figure 3. Frequency dependence of log �ac at different temperatures and at
different concentrations of H2O2 and aniline: (a) 0.2M, (b) 0.4M, and (c) 0.5M.
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Dielectric Properties Investigation of Polyaniline 659

above our experimental frequency limit (100KHz). In contrast, in sample
(c) the peaks were shifted to lower frequencies.

Dependence of ac Conductivity �ac on Frequency

Figure 3 shows the �ac of PANI samples as a function of frequency
(double logarithmic scale) and at different temperatures. It was observed
in all samples that for low frequencies up to 1KHz the real part �ac

becomes almost frequency independent and its value is equal to the
dc conductivity at the respective temperature. At high frequencies the
conductivity becomes frequency dependent.

The total conductivity ��f� at a given temperature and frequency can
be expressed as

��f� = �dc + �ac�f� (2)

where �dc is the dc electrical conductivity and �ac�f� is the ac conduc-
tivity. The frequency variation of �ac�f� at a particular temperature for
a disordered semiconductor obeys the following power-law:

�ac�f� = Afs (3)

where A is a constant dependent on temperature and the exponent s ≤ 1.
It is also noticeable that �ac of all samples shows significant temper-

ature dependence except for sample (c), where the temperature depen-
dence decreases such that all curves become closer to each other.

Dependence of Loss Tangent tan � on Frequency

The variations of tan � with frequency at different temperatures are
illustrated in Figure 4. In most physical interpretations of relaxation
processes in polymers, a peak is assigned to a particular mode of motion
in the main chain such as side chain or side group in the polymermatrix.�39�

It can be seen from Figure 4 that sample (a) exhibits only one peak,
which shifts to higher frequencies as the temperature increases. This
transport process is mainly due to activated hopping of �-electron so that
the peak of tan � is suggested to occur when the most probable relax-
ation time of the hopping electrons coincides with the applied frequency.
On the other hand, sample (b) does not exhibit any peaks within the
studied frequency range. It is worth mentioning that in sample (c), tan �
shows a minimum at ≈75kHz; it is believed that at this frequency tan �
approaches that of ideal capacitor. Also, this minimum gives sample (c)
a high importance in resonance circuits.
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660 M. M. Ayad et al.

Figure 4. Variation of log �tan �� with log frequency at different temperatures
for PANI samples at different concentrations of H2O2 and aniline: (a) 0.2M,
(b) 0.4M, and (c) 0.5M.
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Dielectric Properties Investigation of Polyaniline 661

Figure 5. Complex plan for the electric modulus of PANI samples at different
concentrations of H2O2 and aniline: (a) 0.2M, (b) 0.4M, and (c) 0.5M.
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Cole-Cole Diagrams

Figure 5 shows the Cole-Cole relationship (M ′′ versus M ′) in complex
impedance plane, which gives evidence of relaxation process. In this
diagram, the implicit variable is the frequency, which increases from right
to left. It is seen from Figure 5 that samples (a) and (b) obey the Debye
relation, in which the data points lie closely on only one semicircle or
arc, whereas sample (c) is a multiphase material, where the data were
not collected within one semicircle because every curve represents one
single phase of the assumed phases. In order to have evidence for this
assumption, we draw the relation between ln �dc versus 1000/T for the
samples, shown in Figure 6. It is obvious that for samples (a) and (b), ln
�dc changes linearly with 1000/T, implying that there is one activation
energy for one phase of material, whereas for sample (c) the relation is

Figure 6. Temperature dependence of �dc plotted as ln ��dc� vs. 1000/T for
different PANI samples: (a) sample (a), (b) sample (b), and (c) sample (c).
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Dielectric Properties Investigation of Polyaniline 663

a curve with multiple tangents, implying several activation energies and,
consequently, several phases in the material.

CONCLUSION

In general, for nonpolar polymers, �′ and �′′ are independent of temper-
ature, but in the case of strong polar polymers �′ increases as the temper-
ature increases. On the other hand, in weak polar polymers, �′ and
�′′ decrease with increase in temperature. All samples are strong polar
polymers except for sample (c). This last sample could be classified as a
weak polar polymer.

The dependence of ac conductivity on frequency indicates that the
conductivity of these samples is due to hopping process. The large value
of �′ on low frequency originates mainly from electrode polarization
rather than from the interfacial polarization within the material. The
large value of �′ is due to the motion of free charge carrier within the
material. As a result, a power-law dispersion in �′ is observed, and it does
not reveal any peak in the measured frequency range.

The changes in H2O2 and aniline concentrations have notable effect
on dielectric properties; therefore further work to study the effect
of aniline concentration alone and H2O2 concentration alone on the
dielectric properties for the polymer is currently in progress.
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